## PV Series

## PV Axial piston pump

PV Series axial piston pump

nominal pressure: 350 bar max. pressure:420 bar
1.New type of swash plate and large servo piston with strong bias spring achieves fast response, reduce the noise due to active decompression of system at down stroke.
2.Nine pistons and new precompression technology (precompression filter volume) result in unbeaten low outlet flow pulsation.
3.Complete compensator program offers multiple controls.
4.Rigid and FEM-optimized body design for lowest noise level.
5.Thru drive for $100 \%$ nominal torque.
6.Pump combinations (multiple pumps) of same size and model and mounting interface for basically all metric or SAE mounting interfaces.
7.Wide application in automobile industrial, ships, forging machines, tire machines, injection molding machines, machine tools, special-purpose machine.

## Quick Reference Data Chart

| Size | Model | Pressure |  | Displacement |  | Pump Delivery ( 7 bar ) 100 PSI |  |  |  | APPROX. Noise Levels |  |  | Speed |  | $\begin{gathered} \text { Weight } \\ \hline \text { KG } \\ \text { (LB) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | nominal pressure | $\begin{aligned} & \text { max. } \\ & \text { pressure } \end{aligned}$ | $\mathrm{cm}^{3} \mathrm{rev}$ | $\mathrm{In}^{3} \mathrm{rev}$ | 1500 RPM |  | 1800 RPM |  | dBA Full Flow and 1500 RPM |  |  | Max. <br> RPM | Min. <br> RPM |  |
|  |  |  |  |  |  | LPM | U.S. GPM | LPM | U.S. GPM | $\begin{aligned} & 70 \text { bar } \\ & \text { (1 KSI) } \end{aligned}$ | $\begin{aligned} & 207 \mathrm{bar} \\ & \text { (3 KSI) } \end{aligned}$ | $\begin{aligned} & 343 \mathrm{bar} \\ & (5 \mathrm{KSII}) \end{aligned}$ |  |  |  |
| 1 | PV016 | 350 | 420 | 16 | 0.98 | 24 | 6.3 | 28.8 | 7.6 | 56 | 60 | 68 | 2750 | $\begin{gathered} 19 \\ (42) \end{gathered}$ |  |
|  | PV020 |  |  | 20 | 1.2 | 30 | 7.9 | 36 | 9.5 |  |  |  |  |  |  |  |
|  | PV023 |  |  | 23 | 1.4 | 34.5 | 9.1 | 41.4 | 10.9 |  |  |  |  |  |  |  |
|  | PV028 | 280 | 350 | 28 | 1.7 | 42 | 11 | 50.4 | 13.2 |  |  |  |  |  |  |  |
| 2 | PV032 | 350 | 420 | 32 | 1.9 | 48 | 12.7 | 57.6 | 15.2 | 59 | 62 | 69 | 2400 | 300 | $\begin{gathered} 30 \\ (66) \end{gathered}$ |
|  | PV040 |  |  | 40 | 2.4 | 60 | 15.9 | 72 | 19 |  |  |  |  |  |  |
|  | PV046 |  |  | 46 | 2.8 | 69 | 18.2 | 82.2 | 21.9 |  |  |  |  |  |  |
|  | PV056 | 280 | 350 | 56 | 3.41 | 84 | 22.1 | 100.8 | 26.6 |  |  |  |  |  |  |
|  | PV065 | 250 | 315 | 65 | 3.96 | 97.5 | 25.7 | 117 | 30.9 |  |  |  |  |  |  |
| 3 | PV063 | 350 | 420 | 63 | 3.8 | 94.5 | 25 | 113.4 | 30 | 66 | 70 | 74 | 2100 |  | $\begin{gathered} 60 \\ (132) \end{gathered}$ |
|  | PV071 |  |  | 71 | 4.3 | 107 | 28.3 | 128.7 | 34 |  |  |  | 2100 |  |  |
|  | PV080 |  |  | 80 | 4.8 | 120 | 31.7 | 144 | 38 |  |  |  | 2000 |  |  |
|  | PV092 |  |  | 92 | 5.6 | 138 | 36.5 | 165.6 | 43.8 |  |  |  | 1900 |  |  |
|  | PV110 | 250 | 280 | 110 | 6.7 | 165 | 43.6 | 198 | 52.3 |  |  |  | 1900 |  |  |
| 4 | PV125 | 350 | 420 | 125 | 7.6 | 187.5 | 49.5 | 225 | 59.4 | 70 | 74 | 76 | 2200 |  | $\begin{gathered} 90 \\ (198) \end{gathered}$ |
|  | PV140 |  |  | 140 | 8.5 | 210 | 55.5 | 252.1 | 66.6 |  |  |  |  |  |  |
|  | PV180 |  |  | 180 | 11 | 270 | 71.3 | 324 | 85.6 | 71 | 75 | 77 |  |  |  |
|  | PV210 | 250 | 280 | 210 | 12.8 | 315 | 83 | 378 | 99.8 | 73 | 77 | 79 | 2100 |  |  |
| 5 | PV270 | 350 | 420 | 270 | 16.5 | 405 | 107 | 486 | 128.4 | 77 | 79 | 89 | 1800 |  | $\begin{gathered} 172 \\ (379) \end{gathered}$ |

1. Outlet port is on the top, the pipe pressure should be less than 2 bar
2.The usage of max. Pressure for each circle never exceed 6 seconds. Please see the General Installation Information for hydraulic oil clealiness manual.
3.YEOSHE offers tandem pump or other types of pump connection. The mounting has Metric and SAE dimensions.


Series


Axial piston pump variable displacement high pressure version
nominal pressure:350 bar max. pressure : 420 bar

Size and displacement

| 2 | Code |  | 016 | 020 | 023 | 028 | 032 | 040 | 046 | 056 | 065 | 063 | 071 | 080 | 092 | 110 | 125 | 140 | 180 | 210 | 270 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Size |  | Body 1 |  |  |  | Body 2 |  |  |  |  | Body 3 |  |  |  |  | Body 4 |  |  |  | Body 5 |
|  |  | $\mathrm{cm}^{3} / \mathrm{rev}$ | 16 | 20 | 23 | 28 | 32 | 40 | 46 | 56 | 65 | 63 | 71 | 80 | 92 | 110 | 125 | 140 | 180 | 210 | 270 |
|  | Displacement | $\mathrm{ln}^{3} / \mathrm{rev}$ | 0.98 | 1.2 | 1.4 | 1.7 | 1.9 | 2.4 | 2.8 | 3.41 | 3.96 | 3.8 | 7.3 | 4.8 | 5.6 | 6.6 | 7.6 | 8.5 | 11 | 12.6 | 16.5 |

Control device

| Standard pressure compensator | A0 |
| :--- | :--- |

None pressure compensator (fixed displacement) (pressure protection required) LN
Electrical 2-stage flow compensator (pressure protection required) LS
Fixed displacement 2-stage flow compensator (pressure protection required) LC
Remote type
Remote pressure compensator with NG6 interface $\quad$ GM

| Remote pressure compensator + Relief valve | GA |
| :--- | :--- |

Remote pressure compensator + Proportional pressure valve GJ
Electrical unloading type
Remote pressure compensator + Electrical unloading $\quad$ GR
Remote pressure compensator + 2-stage pressure control GB
Remote pressure compensator + Electrical unloading + 2-stage pressure control GC
Load-sensing type

| Load-sensing compensator with NG6 interface | HM |
| :--- | :--- |

Load-sensing compensator + Relief valve HA

| Load-sensing compensator + Proportional pressure valve | HJ |
| :--- | :--- |

Load-sensing + Electrical unloading type

| Load-sensing compensator + Electrical unloading | HR |
| :--- | :--- |

Load-sensing compensator + 2-stage pressure control HB
Load-sensing compensator + Electrical unloading + 2-stage pressure control HC
Proportional pressure, flow type
Load-sensing compensator + Proportional flow valve + Relief valve HQ
Load-sensing compensator + Proportional pressure valve + Proportional flow valve HK
Horse power type
Horse power compensator with NG6 interface $\quad$ PM
Horse power compensator + Relief valve PA

| Horse power compensator + Proportional pressure valve PJ |
| :--- | :--- |

Horse power compensator + Electrical unloading PR
Horse power compensator + Electrical unloading+2-stage pressure control PC
Horse power load-sensing compensator + Relief valve PH

Horse power load-sensing compensator + Proportional flow valve + Relief valve PQ
Horse power load-sensing compensator + Proportional pressure valve PS

| PV | 063 | GA | 3 | R | M | 1 | A | 0 | N |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| Series | size end | ode | Pressue | Rotation | Mounting | Threads |  | Votage | Seals | Dosson No. |

Pressure adjustment


Pressure range for each control device:

| A0 Standard pressure compensator | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LN None pressure compensator (fixed displacement) (pressure protection required) | - | - | - | - | - |
| LS Electrical 2-stage flow compensator (pressure protection required) | - | - | - | - | - |
| LC Fixed displacement 2-stage flow compensator (pressure protection required) | - | - | - | - | - |
| Remote type |  |  |  |  |  |
| GM Remote pressure compensator with NG6 interface | - | - | - | - | - |
| GA Remote pressure compensator + Relief valve | - | - | - | - | - |
| GJ Remote pressure compensator + Proportional pressure valve | - | - | - | - | - |
| Electrical unloading type |  |  |  |  |  |
| GR Remote pressure compensator + Electrical unloading | - | - | - | - | - |
| GB Remote pressure compensator + 2-stage pressure control | - | - | - | - | - |
| GC Remote pressure compensator + Electrical unloading + 2-stage pressure control | - | - | - | - | - |
| Load-sensing Type |  |  |  |  |  |
| HM Load-sensing compensator with NG6 interface | - | - | - | - | - |
| HA Load-sensing compensator + Relief valve | - | - | - | - | - |
| HJ Load-sensing compensator + Proportional pressure valve | - | - | - | - | - |

# Type code for standard program 

| PV | 063 | GA | 3 | R | M | 1 | A | 0 | N |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| Series | Size and displaceme | Control dev | Pressure | Rotation | Mounting | Threads | Thru drive \& | Voltage | Seals | Design No. |

Pressure range for each control device: $\qquad$ | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |

| Load-sensing + Electrical unloading type |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HR Load-sensing compensator + Electrical unloading | - | - | - | - | - |
| HB Load-sensing compensator + 2-stage pressure control | - | - | - | - | - |
| HC Load-sensing compensator + Electrical unloading + 2-stage pressure control | - | - | - | - | - |
| Proportional pressure, flow type |  |  |  |  |  |
| HQ Load-sensing compensator + Proportional flow valve + Relief valve | - | - | - | - | - |
| HK Load-sensing compensator + Proportional pressure valve <br> + Proportional flow valve | - | - | - | - | - |
| Horse power type |  |  |  |  |  |
| PM Horse power compensator with NG6 interface | - | - | - | - | - |
| PA Horse power compensator + Relief valve | - | - | - | - | - |
| PJ Horse power compensator + Proportional pressure valve | - | - | - | - | - |
| PR Horse power compensator + Relief valve + Electrical unloading | $\square$ | - | - | $\bullet$ | - |
| PC <br> Horse power compensator + Electrical unloading +2 -stage pressure control | - | - | - | - | - |
| PH Horse power load-sensing compensator + Relief valve | - | - | - | - | - |
| PQ Horse power load-sensing compensator <br> + Proportional flow valve + Relief valve | - | - | - | - | - |
| PS Horse power load-sensing compensator <br> + Proportional pressure valve | - | - | - | - | - |

Pressure adjusting (Please following page A-34~36)


Rotation

| 5 Clockwise | R |  |
| :---: | :---: | :---: |
|  | Counter clockwise | L |

[^0]
## Type code for standard program



Mounting

| 6 | Mounting Body |  |  | 1 |  |  |  |  |  |  | 3 |  |  |  |  |  |  |  | 5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Metric | Parallel keyed | M | R | (A-44) | M | R | (A-52 |  | M | R | (A-60) | M | R | Q | (A-67) |  | M | R | $\begin{aligned} & (A-75) \\ & (A-77) \end{aligned}$ |
|  |  | Splined | K | 5 | (A-44) | K | S | P | (A-52) | K | S | (A-60) | K | 5 | P | (A-67) |  | K | S | (A-74) |
|  | Inch | Parallel keyed | N | J | (A-46) | N | 1 | (A-54) |  | N | 1 | (A-62) | N | J | F | (A-69) |  | N | J | (A-76) |
|  |  | Splined | D | U | (A-46) | D | U | G | (A-54) | D | U | (A-62) | D | U | G | (A-69) |  | D | U | (A-76) |

Threads
(Dimensions refer to dimension diagram)

| 7 | BSPP (G) | 1 |
| :---: | :---: | :---: |
|  | PT (RC) | 2 |
|  | UNF (SAE) | 3 |
|  | ISO 6149 (M) | 7 |

Thru drive \& 2nd pump


Size

| SAE AA, $\varnothing 50.8 \mathrm{~mm}$ | C |
| :--- | :---: |
| SAE A, Ø82.55 mm | D |
| SAE B, $\varnothing 101.6 \mathrm{~mm}$ | E |
| SAE C, $\varnothing 127 \mathrm{~mm}$ | F |
| SAE D, $\varnothing 152.4 \mathrm{~mm}$ | G |
| SAE E, $\varnothing 165.1 \mathrm{~mm}$ | H |
| Metric, $\varnothing 63 \mathrm{~mm}$ | I |
| Metric, $\varnothing 80 \mathrm{~mm}$ | J |
| Metric, $\varnothing 100 \mathrm{~mm}$ | K |
| Metric, $\varnothing 125 \mathrm{~mm}$ | L |
| Metric, $\varnothing 160 \mathrm{~mm}$ | M |
| Metric, $\varnothing 200 \mathrm{~mm}$ | N |

[^1]
## Type code for standard program

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline PV \& 063 \& GA \& 3 \& $R$ \& M \& 1 \& A \& 0 \& N \& <br>
\hline 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11 <br>
\hline \multirow[t]{3}{*}{Series} \& \multirow[t]{3}{*}{Size and displaceme} \& \multirow[t]{3}{*}{Control device nt} \& Pressure adjusting \& \multirow[t]{3}{*}{Rotation
Horse po
for horse} \& \multirow[t]{3}{*}{Mounting

wer

power con} \& \multirow[t]{3}{*}{Threads} \& \multirow[t]{3}{*}{| Thru drive \& 2nd pump |
| :--- |
| prefix) |} \& \multirow[t]{3}{*}{Voltage} \& \multirow[t]{3}{*}{Seals} \& \multirow[t]{3}{*}{Design No.} <br>

\hline \& \& \& $E$ \& \& \& \& \& \& \& <br>
\hline \& \& \& 4 \& \& \& \& \& \& \& <br>
\hline
\end{tabular}

Voltage

| None | 0 |
| :--- | :--- |
| AC100V $(50 / 60 \mathrm{HZ})$ | A |
| AC110V $(60 \mathrm{HZ})$ | B |
| AC200V $(50 / 60 \mathrm{HZ})$ | C |
| AC220V $(60 \mathrm{HZ})$ | D |
| DC 12 V | E |
| DC 24 V | F |

Seals

| 10 | NBR | N |
| :---: | :--- | :---: |
|  | VITON, FKM | V |
|  | Ethylen-propylene | E |

[^2]
[^0]:    ■ = available - = on request $※$ = standard type

[^1]:    - = available - = on request $\%$ = standard type $\triangle$ = custom made

[^2]:    - = available - = on request $\%$ = standard type

