

Ordering code for standard program

- Series 6
- Size 5 \ 10 to 200 \ 250 to 1000
- Nominal pressure: 315 \ 400 \ 350 bar
- Maximum pressure: 350 \ 450 \ 400 bar
- Open and closed circuits

Features

- 1. Fixed motor with axial tapered piston rotary group of bentaxis design, for hydrostatic drives in open and closed circuits.
- 2. For use in mobile and stationary applications.
- 3. The output speed is dependent on the flow of the pump and the displacement of the motor.
- 4. The output torque increases with the pressure differential between the high-pressure and the low-pressure side.
- 5. Finely graduated sizes permit far-reaching adaptation to the drive case.
- 6. High power density
- 7. Small dimensions
- 8. High total efficiency
- 9. Good starting characteristics
- 10. Economical design
- 11. One-piece tapered piston with piston rings for sealing.

	_				_										
	A2F		М	200	/ 6	3	w	L	V	Α	В	010			
					,				Ţ		_				
1	2	3	4	5	6	7	8		9	10	11	12	13	14	15

Hydraulic fluid

	Mineral oil and HFD. HFD for sizes 250 to 1000 only in combination with long-life bearings "L" (without code)	
1	Sizes 5 to 200 (without code)	
	Sizes 250 to 1000 (only in combination with long-life bearings "L")	E-

Axial piston unit

2 Bent-axis design, fixed A2F

	Drive shaft bearing	5 to 200	250 to 500	710 to 1000	
3	Standard bearing (without code)	-		_	
J	Long-life bearing	_			L

Operating mode

4 Motor (plug-in motor A2FE, see RE 91008) Μ

Size (NG)

_	Geome	etric	dis	pla	cem	ent,	se	e tal	ole (of va	alue	s or	n pa	ge '	7								
5		5	10	12	16	23	28	32	45	56	63	80	90	107	125	160	180	200	250	355	500	710	1000

Series

Ordering code for standard program

	A2F		М	200	6	3	W	- V	Α	В	010			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Index

	NG10 to 180	1
7	NG200	3
	NG5 and 250 to 1000	0

Direction of rotation

8 Viewed on drive shaft, bidirectional W

9 FKM (fluor-caoutchouc)

	Drive shafts	5	10	12	16	23	28	32	45	56	63	80	90	107	125	160	180	200	250 to 1000	
	Splined shaft	-					•	•	-	•									-	Α
	DIN 5480	_	•		-			-			-		_	•	_	•	-	-	•	Z
10	Parallel keyed shaft	•	-	•			•	•	-	•				-					-	В
	DIN 6885	-	•	•	-	•	•	-	•	•	-	-	-	•	-	-	-	-	•	Р
	Conical shaft 1)	•	-	-	-	-	-	-	-	-	-	_	-	-	_	_	-	-	-	С

Mounting flanges

	Mounting flanges		5 to 250	355 to 1000	
1	ISO 3019-2	4-hole	•	_	В
1	1	8-hole	-		Н

	Port plates for service lines 23)		5	10-16	23	28\32	45	56.63	80\90	107-125	160-180	200	250	355-500	1000	
	SAE flange ports	01	0	-	-				•	-	•	•			•		010
	A and B at rear		7	-	_	_	_	_	_	_	_	_	_	-		_	017
	J 1	02	0	-	_						-		_		-	_	020
	A and B at side, opposite		7	-	_	-	_		A	A	-		-		-	_	027
			9	-	-	-	-	-			_	-	-	-	-	-	029
	Threaded ports A and B at side, opposite	03	0	•	•	•	•	-	-	-	-	-	-	-	-	-	030
12		04	0	-	•	•	•	•		-	-	-	-		-	-	040
	SAE flange ports A and B at bottom (same side)	10	0	-	-	-	•	•		•	•	•	-	-		_	100
	Port plate with 1-level BVD pressure relief valves	17	1	-	_	-	-	-	-	-	•	-					171 178
	for mounting a	18	8	-	_	-					-		_	-	-	_	181
	counterbalance valve 5) BVE	18		-	-	_	-	-	_	_			-	_4)	-	-	188
	Port plate with	19	1	-	-	-							-	-	-	-	191
	pressure-relief valves		2	-	-	-			•		•		-	-	-	-	192

■ = Available	□ = On request	- = Not available
▲ = Not for new p	orojects	= Preferred program

- 1) Conical shaft with threaded pin and woodruff key (DIN 6888). The torque must be transmitted via the tapered press fit.
- 2) Fastening thread or threaded ports, metric.
- 3) Threaded ports at the sides (sizes 10 to 63) plugged with threaded plugs.
- 4) Please contact us.
- 5) Note the restrictions on page 39.

Ordering code for standard program

	A2F		М	200	/ 6	3	W	-	V	Α	В	010			
1	2	3	4	5	6	7	8		9	10	11	12	13	14	15

	Port plate with pressure-relief valves 19 1	
	Valves (see pages 34 to 41)	
	Without valve	0
12	Pressure-relief valve (without pressure boost facility)	1
	Pressure-relief valve (with pressure boost facility)	2
	Flushing and boost pressure valve, mounted	7
	Counterbalance valve BVD/BVE mounted ^{2) 3)}	8
	Flushing and boost pressure valve, integrated	9

Sp

	Speed sensors (see pages 42 and 43)	5 to 16	23 to 180	200	250 to 500	710 to 1000 ¹⁾	
	Without speed sensor (without code)	•			-	•	
	Prepared for HDD speed sensor	_	A	A	•	_	F
13	HDD speed sensor mounted 4)	_	A	•	•	_	Н
	Prepared for DSA speed sensor	_				_	U
	DSA speed sensor mounted 4)	_				_	V

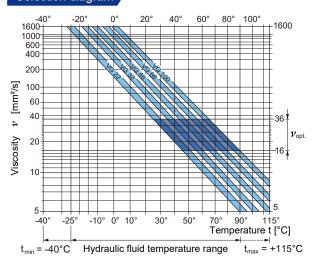
Special version

1	Standard version (without code)	
1	Special version for slew drives (standard with port plate 19)	J

Standard / special version

	Standard version (without code)	
1	Standard version with installation variants, e. g. T ports against standard open or closed	-Y
	Special version	-S

= Available □ = On request - = Not available ▲ = Not for new projects = Preferred program


- 1) Please contact us.
- 2) Note the restrictions on page 39.
- 3) Specify ordering code of counterbalance valve according to data sheet (BVD RE 95522, BVE RE 95525) separately.
- 4) Specify ordering code of sensor according to data sheet (DSA RE 95133, HDD RE 95135) separately and observe the requirements on the electronics

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids), RE 90222 (HFD hydraulic fluids) and RE 90223 (HFA, HFB, HFC hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The fixed motor A2FM is not suitable for operation with HFA hydraulic fluid. If HFB, HFC or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature, in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (\mathcal{V}_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X°C, an operating temperature of 60°C is set in the circuit. In the optimum operating viscosity range ($\mathcal{V}_{\text{opt.}}$, shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature or reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case at port U (sizes 250 to 1000) or using a flushing and boost pressure valve (see pages 34).

Viscosity and temperature of hydraulic fluid

	Viscosity [mm²/s]	Temperature	Comment
Transport and storage at ambient temperature		$T_{min} \ge -50$ °C $T_{opt} = +5$ °C to +20°C	factory preservation: up to 12 months with standard, up to 24 months with long-term
(Cold) start-up ¹⁾	v_{max} = 1600	T _{St} ≥ -40°C	t ≤ 3 min, without load (p ≤ 50 bar), n ≤ 1000 rpm (for sizes 5 to 200), n ≤ 0.25 • n _{nom} (for sizes 250 to 1000)
Permissible temperatur	re difference	ΔT ≤ 25 K	between axial piston unit and hydraulic fluid
Warm-up phase	ν < 1600 to 400	T = -40°C to -25 °C	at p ≤ 0.7 • p_{nom} , n ≤ 0.5 • n_{nom} and t ≤ 15 min
Operating phase			
Temperature difference	е	$\Delta T = approx. 12 K$	between hydraulic fluid in the bearing and at port T.
Maximum temperature		115°C	in the bearing
		103°C	measured at port T
Continuous operation	v = 400 to 10 $v_{\text{opt}} = 36 \text{ to } 16$	T = -25°C to +90°C	measured at port T, no restriction within the permissible data
Short-term operation ²⁾	<i>v</i> _{min} ≥ 7	T _{max} = +103 °C	measured at port T , t < 3 min, p < 0.3 • p _{nom}
FKM shaft seal 1)		T ≤ +115°C	see page 5

At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range : -40 °C to +90 °C).

Sizes 250 to 1000, please contact us.

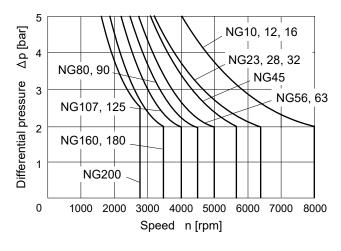
Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

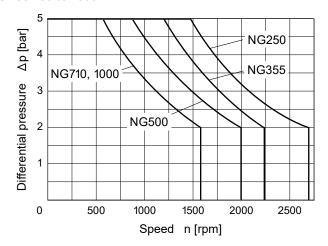
To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90°C to maximum 115°C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

If the above classes cannot be achieved, please contact us.


Shaft seal

Permissible pressure loading


The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1s) of up to 10bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

Sizes 10 to 200

Sizes 250 to 1000

The values are valid for an ambient pressure $p_{abs} = 1bar$.

Temperature range

The FKM shaft seal may be used for case drain temperatures from -25 $^{\circ}$ C to +115 $^{\circ}$ C.

Note

For application cases below -25°C, an NBR shaft seal is required (permissible temperature range : -40°C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Direction of flow

Direction of rotation	on, viewed on drive shaft
clockwise	counter-clockwise
A to B	B to A

Speed range

No limit to minimum speed n_{min} . If uniformity of motion is required, speed n_{min} must not be less than 50 rpm. See table of values on page 7 for maximum speed.

Long-life bearing

Sizes 250 to 1000

For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible. Bearing and case flushing via port U is recommended.

Flushing flow (recommended)

NG	250	355	500	710	1000
q _{v flush} (L/min)	10	16	16	16	16

Operating pressure range

(operating with mineral oil)

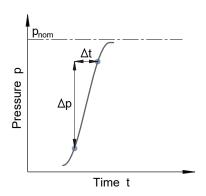
Pressure at service line port A or B

Size 5

Nominal pressure pnom	315 bar absolute
Maximum pressure p _{max}	350 bar absolute
Single operating period	10s
Total operating period	300h
Summation pressure (pressu	ure A + pressure B)p _{Su} _630 bar

Sizes 10 to 200

Nominal pressure pnom	400 bar absolute
Maximum pressure p _{max} _	450 bar absolute
Single operating period	10s
Total operating period	300 h
Summation pressure (pres	sure A + pressure B) P _{Su} 700 bar

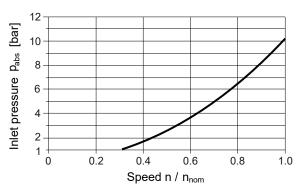

Sizes 250 to 1000

Nominal pressure p _{nom}	_ 350 bar absolute
Maximum pressure p _{max}	_400 bar absolute
Single operating period	10s
Total operating period	300 h
Summation pressure (pressure A + pressure	re B) Psu 700 har

Minimum pressure (high-pressure side) 25 bar absolute

Rate of pressure change

with integrated pressure-relief valve __ 9000 bar/s 16000 bar/s without pressure-relief valve


Note

Values for other hydraulic fluids, please contact us.

Minimum pressure – pump mode

(inlet)

To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). The minimum pressure depends on the speed of the axial piston unit (see charac teristic curve below).

This diagram is valid only for the optimum viscosity range from $v_{\rm opt}$ = 36 to 16 mm²/s.

Please contact us if these conditions cannot be satisfied.

Definition

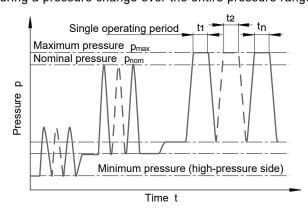
Nominal pressure p_{nom}

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure p_{max}

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

Summation pressure p_{Su}

The summation pressure is the sum of the pressures at both service line ports (A and B).

Rate of pressure change RA

Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Total operating period = t1 + t2 + ... + t

Table of values (theoretical values, without efficiency and tolerances; values rounded)

Displacement geometric, per revolution Vg cm² 4.93 10.3 12 16 22.9 28.1 32 45.6 56.1 63 80.4															
Per revolution Vg Chr 4.90 10.3 12 16 22.9 28.1 32 45.6 66.1 63 80.4	Size		NG		5	10	12	16	23	28	32	45	56	63	80
No. 100	Displacement of per revolution	geometric,	Vg	cm³	4.93	10.3	12	16	22.9	28.1	32	45.6	56.1	63	80.4
Input flow 3 at n, mand Vg at n, mand V	Speed maximu	m ¹⁾	n _{nom}	rpm	10000	8000	8000	8000	6300	6300	6300	5600	5000	5000	4500
$\begin{array}{c} \operatorname{at} \ r_{n_{n_{m_{min}}}} \operatorname{and} \ V_{g} \\ \operatorname{at} \ V_{g} \ \operatorname{and} \\ \operatorname{at} \ \operatorname{and} \ \operatorname{and} \ \operatorname{and} \\ \operatorname{at} \ \operatorname{and} \ \operatorname{and} \ \operatorname{and} \ \operatorname{and} \\ \operatorname{at} \ \operatorname{and} \ a$			n _{max} ²⁾	rpm	11000	8800	8800	8800	6900	6900	6900	6200	5500	5500	5000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input flow $^{3)}$ at n_{nom} and V_g		q_V	L/min	49	82	96	128	144	177	202	255	281	315	362
Ap = 400 bar	Torque 4)														
Ap = 400 bar T Nm - 66 76 102 146 179 204 290 357 401 512	at V ₋ and	∆p = 350 bar	Т	Nm	24.7	57	67	89	128	157	178	254	313	351	448
Rotary stiffness C rad 0.63 0.92 1.25 1.59 2.56 2.93 3.12 4.18 5.94 6.25 8.73	at vg and	∆p = 400 bar	Т	Nm	_	66	76	102	146	179	204	290	357	401	512
for rotary group Size NG 90 107 125 160 180 200 250 355 500 710 1000	Rotary stiffness	3	С		0.63	0.92	1.25	1.59	2.56	2.93	3.12	4.18	5.94	6.25	8.73
Case volume V L $ 0.17$ 0.17 0.17 0.20 0.20 0.20 0.33 0.45 0.45 0.55			J_{GR}	kgm²	0.00006	0.0004	0.0004	0.0004	0.0012	0.0012	0.0012	0.0024	0.0042	0.0042	0.0072
Mass (approx.) m kg 2.5 5.4 5.4 5.4 9.5 9.5 9.5 13.5 18 18 23 Size NG 90 107 125 160 180 200 250 355 500 710 1000 Displacement geometric, per revolution Vg cm³ 90 106.7 125 160.4 180 200 250 355 500 710 1000 Speed maximum¹¹) nnom rpm 4500 4000 4000 3600 3600 2750 2700 2240 2000 1600 1600 Speed maximum¹¹) qv L/min 405 427 500 577 648 550 675 795 1000 1136 1600 1 at norm and Vg qv L/min 405 427 500 577 648 550 675 795 1000 1136 1600 Torque ⁴) at Vg and	Maximum anguacceleration	ılar	α	rad/s²	5000	5000	5000	5000	6500	6500	6500	14600	7500	7500	6000
Size NG 90 107 125 160 180 200 250 355 500 710 1000 Displacement geometric, per revolution Vg cm³ 90 106.7 125 160.4 180 200 250 355 500 710 1000 Speed maximum¹¹) nmm rpm 4500 4000 4000 3600 2750 2700 2240 2000 1600 1600 Speed maximum¹¹) nmm rpm 4500 4000 4000 3600 2750 2700 2240 2000 1600 1600 10put flow ³¹ qv L/min 405 427 500 577 648 550 675 795 1000 1136 1600 10put flow ³¹ qv L/min 405 427 500 577 648 550 675 795 1000 1136 1600 10put flow ³¹ at Vg and Δp = 350 bar T	Case volume		V	L	_	0.17	0.17	0.17	0.20	0.20	0.20	0.33	0.45	0.45	0.55
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mass (approx.)		m	kg	2.5	5.4	5.4	5.4	9.5	9.5	9.5	13.5	18	18	23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Size		NG		90	107	125	160	180	200	250	355	500	710	1000
$\frac{\ln N_{max}^{2}}{\ln N_{max}^{2}} \frac{\ln N_{max}^{2}}{\ln N_{max}^{$	Displacement of per revolution	geometric,	Vg	cm³	90	106.7	125	160.4	180	200	250	355	500	710	1000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Speed maximu	m ¹⁾	n _{nom}	rpm	4500	4000	4000	3600	3600	2750	2700	2240	2000	1600	1600
Torque 4) $ \frac{\Delta p}{\Delta V_g} = 350 \text{ bar} T Nm 501 594 696 893 1003 1114 1393 1978 2785 3955 5570 $ $ \frac{\Delta V_g}{\Delta V_g} = 400 \text{ bar} T Nm 573 679 796 1021 1146 1273 - - - - - - - - - $				rpm	5000	4400	4400	4000	4000	3000	-	_	-	-	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input flow ³⁾ at n _{nom} and V _g		q _V	L/min	405	427	500	577	648	550	675	795	1000	1136	1600
$\frac{\text{And}}{\text{Ap = 400 bar}} \frac{\text{T}}{\text{Nm}} = \frac{\text{Nm}}{573} = \frac{679}{796} = \frac{796}{1021} = \frac{1146}{1146} = \frac{1273}{127} = \frac{-}{-} = \frac{-}$	Torque 4)														
$ \Delta p = 400 \text{ bar} T Nm 573 679 796 1021 1146 1273 - - - - - - - - - $	at \/ and	∆p = 350 bar	Т	Nm	501	594	696	893	1003	1114	1393	1978	2785	3955	5570
Rotary stiffness c rad 9.14 11.2 11.9 17.4 18.2 57.3 73.1 96.1 144 270 324 Moment of inertia for rotary group J _{GR} kgm² 0.0072 0.0116 0.0116 0.0220 0.0220 0.0353 0.061 0.102 0.178 0.55 0.55 Maximum angular acceleration α rad/s² 6000 4500 4500 3500 3500 11000 10000 8300 5500 4300 4500 Case volume V L 0.55 0.8 0.8 1.1 1.1 2.7 2.5 3.5 4.2 8 8	at V _g and	∆p = 400 bar	Т	Nm	573	679	796	1021	1146	1273	_	_	_	_	_
for rotary group Maximum angular acceleration α rad/s² 6000 4500 4500 3500 3500 11000 10000 8300 5500 4300 4500 Case volume V L 0.55 0.8 0.8 1.1 1.1 2.7 2.5 3.5 4.2 8 8	Rotary stiffness	5	С		9.14	11.2	11.9	17.4	18.2	57.3	73.1	96.1	144	270	324
α rad/s² 6000 4500 4500 3500 3500 11000 10000 8300 5500 4300 4500 Case volume V L 0.55 0.8 0.8 1.1 1.1 2.7 2.5 3.5 4.2 8			J_{GR}	kgm²	0.0072	0.0116	0.0116	0.0220	0.0220	0.0353	0.061	0.102	0.178	0.55	0.55
	Maximum anguacceleration	ılar	α	rad/s²	6000	4500	4500	3500	3500	11000	10000	8300	5500	4300	4500
Mass (approx.) m kg 23 32 32 45 45 66 73 110 155 325 336	Case volume		V	L	0.55	8.0	8.0	1.1	1.1	2.7	2.5	3.5	4.2	8	8
	Mass (approx.)		m	kg	23	32	32	45	45	66	73	110	155	325	336

- 1) The values are valid:
 - for the optimum viscosity range from v_{opt} = 36 to 16 mm2/s
 - with hydraulic fluid based on mineral oils
- 2) Intermittent maximum speed: overspeed for unload and overhauling processes, t < 5 s and Δp < 150 bar
- Restriction of input flow with counterbalance valve, see page 39
- 4) Torque without radial force, with radial force see page 8
- 5) Torque at $\Delta p = 315$ bar

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible start up angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Permissible radial and axial forces of the drive shafts

(splined shaft and parallel keyed shaft)

Size	NG		5	5 ³⁾	10	10	12	12	16	23	23
Drive shaft	Ø	mm	12	12	20	25	20	25	25	25	30
Maximum radial force 1)	F _{q max}	kN	1.6	1.6	3.0	3.2	3.0	3.2	3.2	5.7	5.4
at distance a (from shaft collar)	а	mm	12	12	16	16	16	16	16	16	16
with permissible torque	T_{max}	Nm	24.7	24.7	66	66	76	76	102	146	146
△ permissible pressure Δp	Δp_{perm}	bar	315	315	400	400	400	400	400	400	400
Maximum axial force 2)	+F _{ax max}	N	180	180	320	320	320	320	320	500	500
F _{ax} ±	-F _{ax max}	N	0	0	0	0	0	0	0	0	0
Permissible axial force per bar operating pressure	±F _{ax perm/bar}	N/bar	1.5	1.5	3.0	3.0	3.0	3.0	3.0	5.2	5.2

Size	NG		28	28	32	45	56	56 ⁴⁾	56	63	80
Drive shaft	Ø	mm	25	30	30	30	30	30	35	35	35
Maximum Fq	F _{q max}	kN	5.7	5.4	5.4	7.6	9.5	7.8	9.1	9.1	11.6
at distance a (from shaft collar)	а	mm	16	16	16	18	18	18	18	18	20
with permissible torque	T_{max}	Nm	179	179	204	290	357	294	357	401	512
<u>△</u> permissible pressure Δp	Δp_{perm}	bar	400	400	400	400	400	330	400	400	400
Maximum axial force 2)	+F _{ax max}	N	500	500	500	630	800	800	800	800	1000
F _{ax} ±	-F _{ax max}	N	0	0	0	0	0	0	0	0	0
Permissible axial force per bar operating pressure	±F _{ax perm/bar}	N/bar	5.2	5.2	5.2	7.0	8.7	8.7	8.7	8.7	10.6

¹⁾ With intermittent operation

- 2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.
- 3) Conical shaft with threaded pin and woodruff key (DIN 6888)
- 4) Restricted technical data only for splined shaft

Influence of the direction of the permissible axial force :

+F_{ax max} = Increase in service life of bearings

-F _{ax max} = Reduction in service life of bearings (avoid)

Permissible radial and axial forces of the drive shafts (splined shaft and parallel keyed shaft)

Size	NG		80 4)	80	90	107	107	125	160	160	160
Drive shaft	Ø	mm	35	40	40	40	45	45	45	50	50
Maximum F _q	F _{q max}	kN	11.1	11.4	11.4	13.6	14.1	14.1	18.1	18.3	18.3
at distance a (from shaft collar)	а	mm	20	20	20	20	20	20	25	25	25
with permissible torque	T_{max}	Nm	488	512	573	679	679	796	1021	1021	1146
<u>△</u> permissible pressure ∆p	Δp_{perm}	bar	380	400	400	400	400	400	400	400	400
Maximum axial force ²⁾ п	+F _{ax max}	N	1000	1000	1000	1250	1250	1250	1600	1600	1600
F _{ax} ±	-F _{ax max}	N	0	0	0	0	0	0	0	0	0
Permissible axial force per bar operating pressure	±F _{ax perm/bar}	N/bar	10.6	10.6	10.6	12.9	12.9	12.9	16.7	16.7	16.7

Size	NG		200	250	355	500	710	1000
Drive shaft	Ø	mm	50	50	60	70	90	90
Maximum radial force 1)	F _{q max}	kN	20.3	1.2 ⁶⁾	1.5 ⁶⁾	1.9 ⁶⁾	3.0 6)	2.6 ⁶⁾
at distance a (from shaft collar)	а	mm	25	41	52.5	52.5	67.5	67.5
with permissible torque	T_{max}	Nm	1273	5)	5)	5)	5)	5)
<u>△</u> permissible pressure ∆p	Δp_{perm}	bar	400	5)	5)	5)	5)	5)
Maximum axial force 2)	+F _{ax max}	N	1600	2000	2500	3000	4400	4400
F _{ax} ±	-F _{ax max}	N	0	0	0	0	0	0
Permissible axial force per bar operating pressure	±F _{ax perm/bar}	N/bar	16.7	5)	5)	5)	5)	5)

- 1) With intermittent operation
- 2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.
- 3) Conical shaft with threaded pin and woodruff key (DIN 6888)
- 4) Restricted technical data only for splined shaft
- 5) Please contact us.

6) When at a standstill or when axial piston unit operating in non-pressurized conditions. Higher forces are permissible when under pressure, please contact us.

Note

Influence of the direction of the permissible axial force :

 $+F_{ax max}$ = Increase in service life of bearings

-F _{ax max} = Reduction in service life of bearings (avoid)

Effect of radial force F_q on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

	Toothed gear drive	V-belt output
NG	ϕ_{opt}	ϕ_{opt}
5 to 180	± 70°	± 45°
200 and 1000	± 45°	± 70°

Alternating direction of rotation Clockwise "Counter-clockwise" "Counter-clockwise" direction of direction of rotation direction of rotation rotation Pressure at Pressure at Pressure at port B port B port A

Determining the operating characteristics

Input flow
$$q_v = \frac{V_g \cdot n}{1000 \cdot \eta_v}$$
 [L/min]

Speed
$$n = \frac{q_V \cdot 1000 \cdot \eta_V}{V_a}$$
 [min⁻¹]

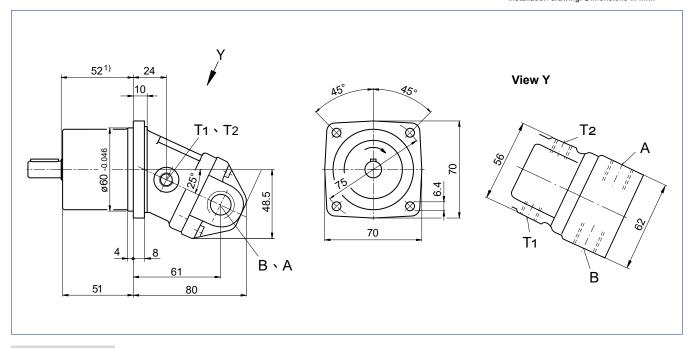
Torque
$$T = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{20 \cdot \pi}$$
 [Nm]

Power
$$P = \frac{2\pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p \cdot \eta_t}{600}$$
 [kW]

= Displacement per revolution in cm³

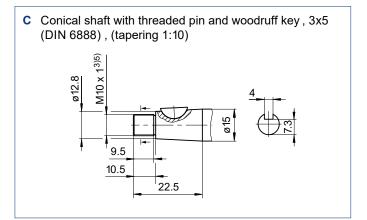
= Differential pressure in bar

= Speed in rpm


= Volumetric efficiency

= Mechanical-hydraulic efficiency

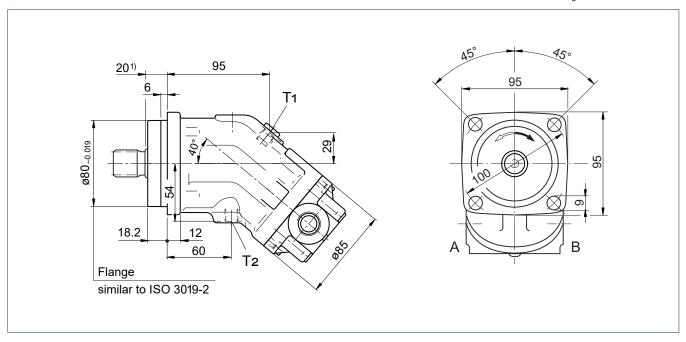
= Total efficiency $(\eta_t = \eta_v \cdot \eta_{mh})$



Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

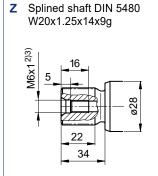
B Parallel keyed shaft DIN 6885, A4x4x20 24


Designation	Port for	Standard ⁶⁾	Size ³⁾	Maximum pressure [bar] 4)	State 7)
Α、B	Service line	DIN 3852	M18 x 1.5; 12 deep	350	0
T1	Drain line	DIN 3852	M10 x 1; 8 deep	3	0
T2	Drain line	DIN 3852	M10 x 1; 8 deep	3	0

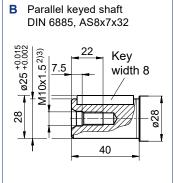
- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Thread according to DIN 3852, maximum tightening torque: 30 Nm
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) O = Must be connected (plugged on delivery)

Dimensions sizes 10 \ 12 \ 16

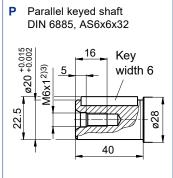
Before finalizing your design, request a binding installation drawing. Dimensions in mm.



Drive shafts


Sizes 10 \ 12 \ 16

Splined shaft DIN 5480 W25x1.25x18x9g M10x1.5²⁾³⁾ 28


Sizes 10 \ 12

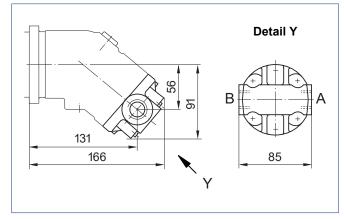
Sizes 10 \ 12 \ 16

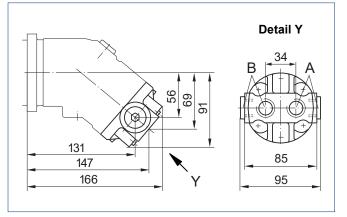
Sizes 10 \ 12

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] 4)	State 7)
Α、B	Service line (see port plates)			450	
T1	Drain line	DIN 3852	M12 x 1.5 ; 12 deep	3	X 5)
T2	Drain line	DIN 3852	M12 x 1.5 ; 12 deep	3	O ⁵⁾

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

13

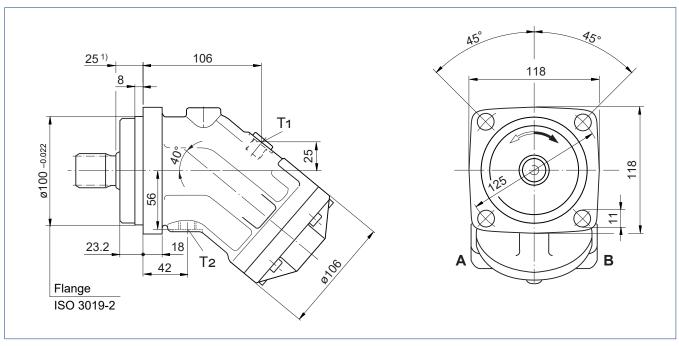

Dimensions sizes 10 \ 12 \ 16


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

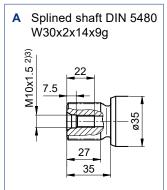
03 - Threaded ports at side, opposite

04 - Threaded ports at side and rear

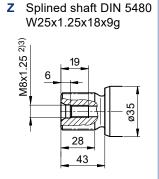

Plate	Designation	Port for	Standard ³⁾	Size 1)	Maximum pressure [bar] ²⁾	State ⁴⁾
03	A \ B	Service line	DIN 3852	M22 x 1.5 ; 14 deep	450	0
04	Α.Β	Service line	DIN 3852	M22 x 1.5 ; 14 deep	450	1x O each

- Observe the general instructions on page 46 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) The spot face can be deeper than specified in the appropriate standard.
- 4) O = Must be connected (plugged on delivery)

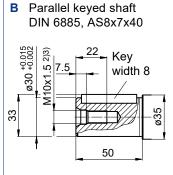
Dimensions sizes 23 \ 28 \ 32

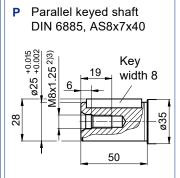


Before finalizing your design, request a binding installation drawing. Dimensions in mm.



Drive shafts


Sizes 23 \ 28 \ 32


Sizes 23 \ 28

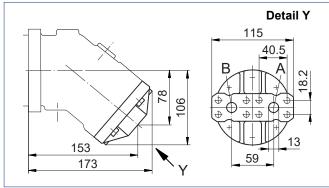
Sizes 23 \ 28 \ 32

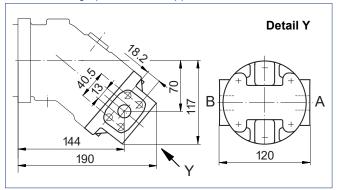
Sizes 23 \ 28

Designation	Port for	Standard	Size 3)	Maximum pressure [bar] 4)	State 7)
Α、B	Service line (see port plates)			450	
T1	Drain line	DIN 3852 ⁵⁾	M16 x 1.5 ; 12 deep	3	X 5)
T2	Drain line	DIN 3852 ⁵⁾	M16 x 1.5 ; 12 deep	3	O ⁵⁾

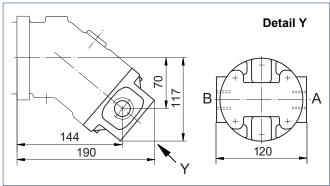
- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

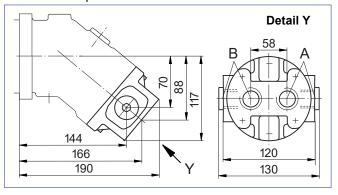
M

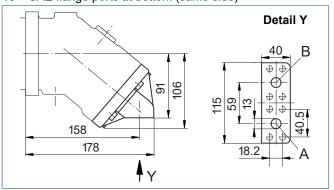

Dimensions sizes 23 \ 28 \ 32


Before finalizing your design, request a bindir installation drawing. Dimensions in mm.

Location of the service line ports on the port plates


01 - SAE flange ports at rear

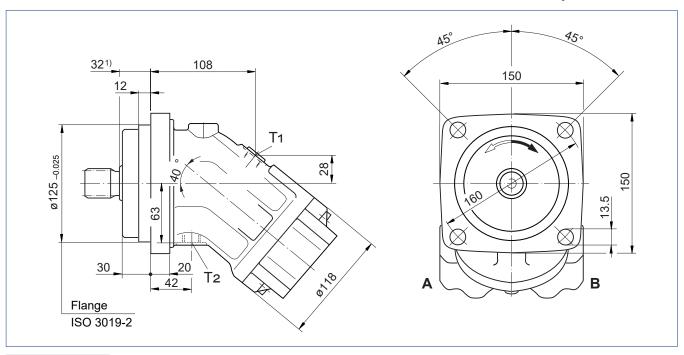

02 - SAE flange ports at side, opposite


03 - Threaded ports at side, opposite

04 - Threaded ports at side and rear

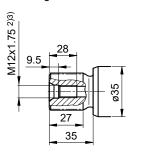
10 - SAE flange ports at bottom (same side) 4)

Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
01 \ 02 \ 10		Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1/2 in M8 x 1.25 ; 15 deep	450	0
03	Α·Β	Service line	DIN 3852 ⁵⁾	M27 x 2 ; 16 deep	450	0
04		Service line	DIN 3852 ⁵⁾	M27 x 2 ; 16 deep	450	1 x O each


- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard
- 4) Only sizes 28 and 32
- 5) The spot face can be deeper than specified in the appropriate standard.
- 6) O = Must be connected (plugged on delivery)

Note

Port plates 18 and 19: see pages 37 and 40



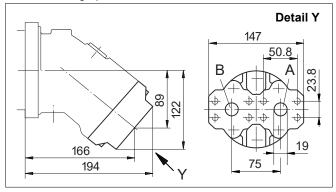
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

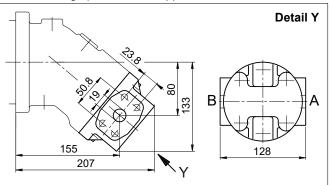
Drive shafts

Z Splined shaft DIN 5480 W30x2x14x9g

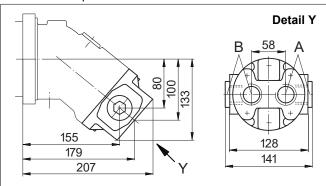
Parallel keyed shaft DIN 6885, AS8x7x50 ø30 +0.015 +0.002 M12x1.75 2)3) Key width 8

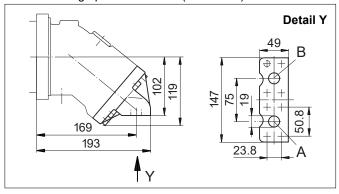
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
Α、B	Service line (see port plates)			450	
T1	Drain line	DIN 3852 6)	M18 x 1.5 ; 12 deep	3	X 5)
T2	Drain line	DIN 3852 6)	M18 x 1.5 ; 12 deep	3	O ⁵⁾


- 1) To shaft collar
- Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 44).
- The spot face can be deeper than specified in the appropriate standard.
- O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates


01 - SAE flange ports at rear

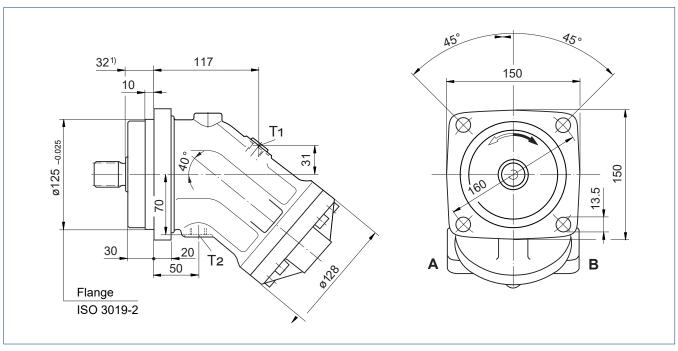

02 - SAE flange ports at side, opposite

04 - Threaded ports at side and rear

10 - SAE flange ports at bottom (same side)

Plate	Designation	Port for	Standard	Size 1)	Maximum pressure [bar] ²⁾	State 5)
01、02、 10	A \ B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	3/4 in M10 x 1.5 ; 17 deep	450	0
04		Service line	DIN 3852 4)	M33 x 2 ;18 deep	450	1x O each

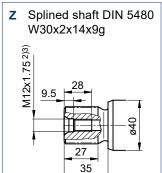
- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) The spot face can be deeper than specified in the appropriate standard.
- 5) O = Must be connected (plugged on delivery)


Note

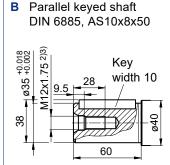
Port plates 18 and 19: see pages 37 and 40

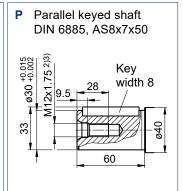
Dimensions sizes 56 × 63

Before finalizing your design, request a binding installation drawing. Dimensions in mm.



NG56 \ 63


Drive shafts


NG56 \ 63 A Splined shaft DIN 5480 W35x2x16x9g M12x1.752)3)

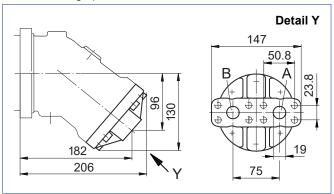
40

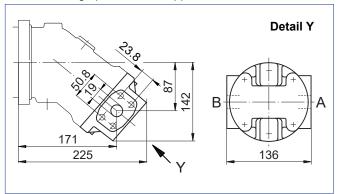
NG56

NG56

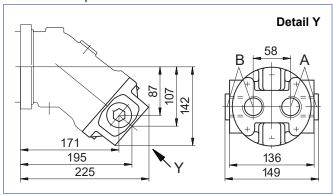
1 0110					
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
Α、B	Service line (see port plates)			450	
T1	Drain line	DIN 3852 ⁶⁾	M18 x 1.5 ; 12 deep	3	X ⁵⁾
T2	Drain line	DIN 3852 ⁶⁾	M18 x 1.5 ; 12 deep	3	O ⁵⁾

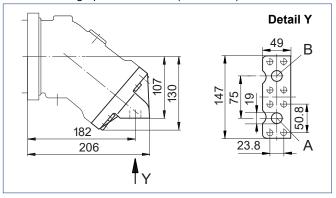
- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- Observe the general instructions on page 46 for the maximum tightening torques. 3)
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 44). 5)
- 6) The spot face can be deeper than specified in the appropriate standard.
- O = Must be connected (plugged on delivery) 7)
 - X = Plugged (in normal operation)


Dimensions sizes 56 \ 63


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates


01 - SAE flange ports at rear

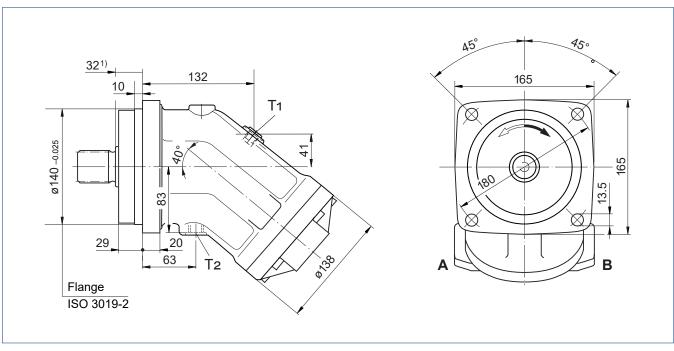

02 - SAE flange ports at side, opposite

04 - Threaded ports at side and rear

10 - SAE flange ports at bottom (same side)

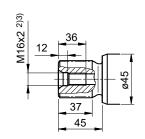
Plate	Designation	Port for	Standard	Size 1)	Maximum pressure [bar] ²⁾	State ⁵⁾
01、02、 10	A \ B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	3/4 in M10 x 1.5 ; 17 deep	450	0
04		Service line	DIN 3852 4)	M33 x 2 ; 18 deep	450	1x O each

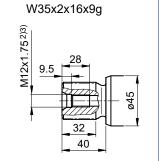
- 1) Observe the general instructions on page 46 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) The spot face can be deeper than specified in the appropriate standard.
- 5) O = Must be connected (plugged on delivery)


Note

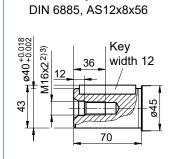
Port plates 18 and 19: see pages 37 and 40

Dimensions sizes 80 \ 90

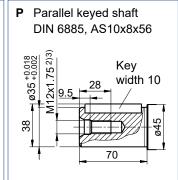

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Drive shafts

NG80 \ 90


A Splined shaft DIN 5480 W40x2x18x9g

NG80 Z Splined shaft DIN 5480



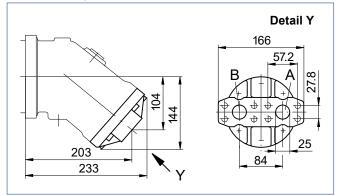
NG80 \ 90

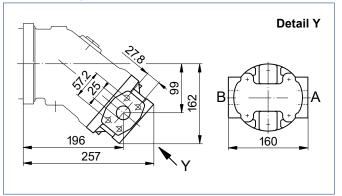
B Parallel keyed shaft

NG80

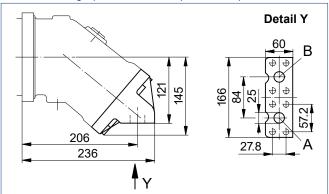
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
Α丶B	Service line (see port plates)			450	
T1	Drain line	DIN 3852 ⁶⁾	M18 x 1.5 ; 12 deep	3	X ⁵⁾
T2	Drain line	DIN 3852 ⁶⁾	M18 x 1.5 ; 12 deep	3	O ⁵⁾

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- Observe the general instructions on page 46 for the maximum tightening torques. 3)
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 44).
- The spot face can be deeper than specified in the appropriate standard. 6)
- O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)


Dimensions sizes 80 \ 90


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

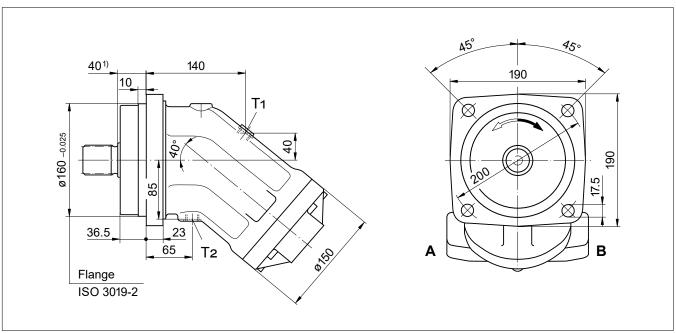

01 - SAE flange ports at rear

02 - SAE flange ports at side, opposite

10 - SAE flange ports at bottom (same side)

Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
01、02、 10	Α、B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 in M12 x 1.75 ; 17 deep	450	0

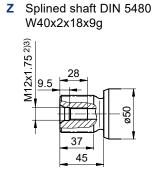
- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) O = Must be connected (plugged on delivery)


Note

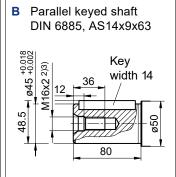
Port plates 18 and 19: see pages 37 and 40

Dimensions sizes 107 \ 125

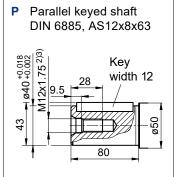
Before finalizing your design, request a binding installation drawing. Dimensions in mm.



Drive shafts


NG107 \ 125

A Splined shaft DIN 5480 W45x2x21x9g M16x2²⁾³⁾

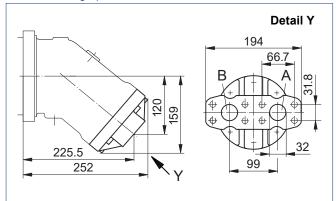

NG107

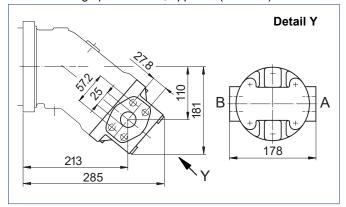
NG107 \ 125

NG107

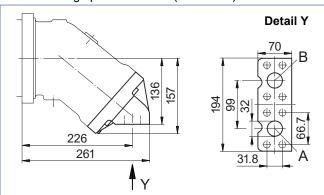
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
А、В	Service line (see port plates)			450	
T1	Drain line	DIN 3852 ⁶⁾	M18 x 1.5 ; 12 deep	3	X ⁵⁾
T2	Drain line	DIN 38526)	M18 x 1.5 ; 12 deep	3	O ⁵⁾

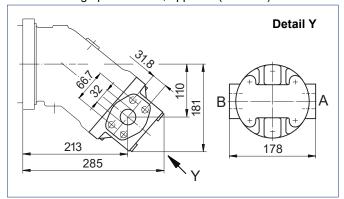
- To shaft collar 1)
- Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 44).
- The spot face can be deeper than specified in the appropriate standard.
- O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)


Dimensions sizes 107 \ 125


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates


01 - SAE flange ports at rear

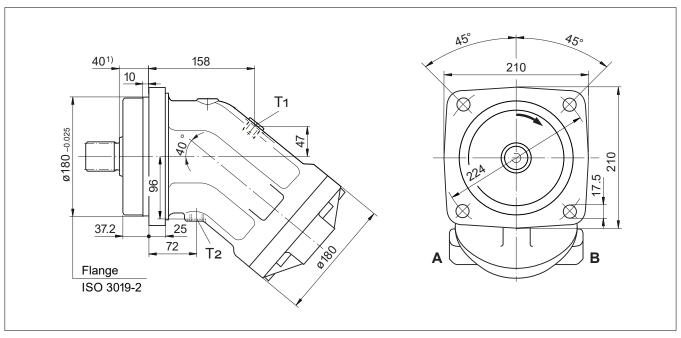

02 - SAE flange ports at side, opposite (size 107)

10 - SAE flange ports at bottom (same side)

02 - SAE flange ports at side, opposite (size 125)

Plate	Designation	Port for	Standard	Size 1)	Maximum pressure [bar] 2)	State 4)
01 \ 10	Α、B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2 ; 19 deep	450	0
02 (size 107)		Service line Fastening thread A/B	SAE J518 3) DIN 13	1 in M12 x 1.75 ; 17 deep	450	0
02 (size 125)		Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2 ; 19 deep	450	0

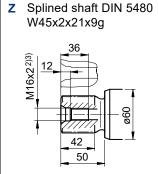
- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) O = Must be connected (plugged on delivery)


Note

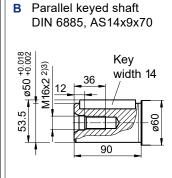
Port plates 17, 18 and 19: see pages 37 and 40

Dimensions sizes 160 \ 180

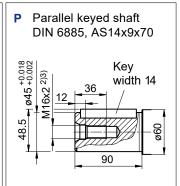
Before finalizing your design, request a binding installation drawing. Dimensions in mm.



Drive shafts


NG160 \ 180

Splined shaft DIN 5480 W50x2x24x9g M16x2 2)3) 55

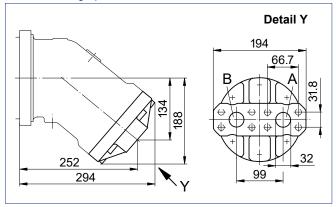

NG160

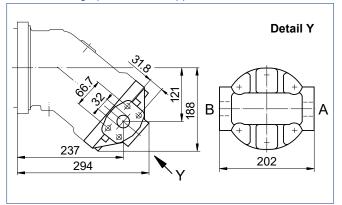
NG160, 180

NG160

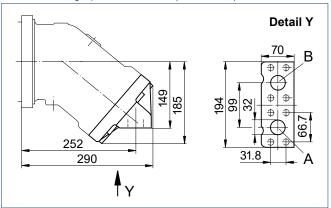
. 0.10					
Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] 4)	State ⁷⁾
Α、B	Service line (see port plates)			450	
T1	Drain line	DIN 3852 6)	M22 x 1.5 ; 14 deep	3	X ⁵⁾
T2	Drain line	DIN 3852 6)	M22 x 1.5 ; 14 deep	3	O ⁵⁾

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. 4)
- Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 44).
- 6) The spot face can be deeper than specified in the appropriate standard.
- O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)


Dimensions sizes 160 \ 180


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

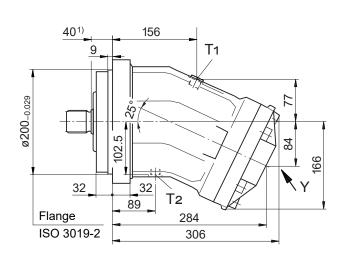

01 - SAE flange ports at rear

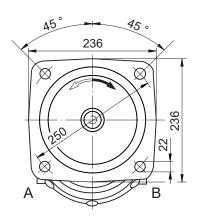
02 - SAE flange ports at side, opposite

10 - SAE flange ports at bottom (same side)

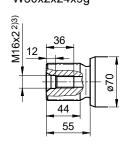
Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
01、02、 10	А \В	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2 ; 19 deep	450	Ο

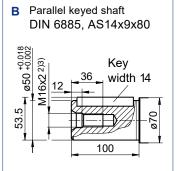
- 1) Observe the general instructions on page 46 for the maximum tightening torques
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) O = Must be connected (plugged on delivery)

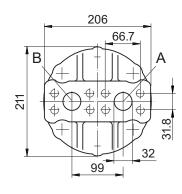

Note


Port plates 18 and 19: see pages 37 and 40

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

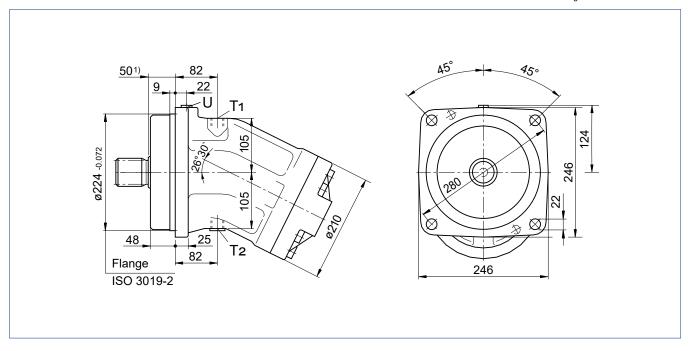

Port plate 01 - SAE flange ports at rear




Drive shafts

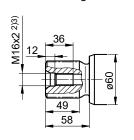
Splined shaft DIN 5480 W50x2x24x9g

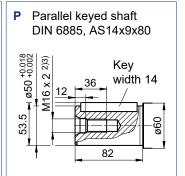
Detail Y


Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State 8)
A、B	Service line Fastening thread A/B	SAE J5185 DIN 13	1 1/4 in M14 x 2 ; 19 deep	450	0
T1	Drain line	DIN 38527)	M22 x 1.5 ; 14 deep	3	X ⁶⁾
T2	Drain line	DIN 38527)	M22 x 1.5 ; 14 deep	3	O ⁶⁾

- To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 44).
- 7) The spot face can be deeper than specified in the appropriate standard.
- O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Notes	YEO5HE

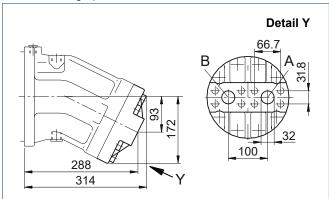


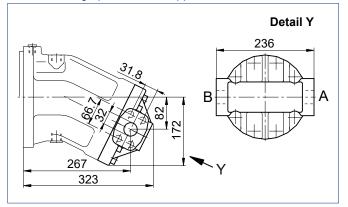

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

Z Splined shaft DIN 5480 W50x2x24x9g

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
Α、B	Service line (see port plates)			400	
T1	Drain line	DIN 3852 ⁶⁾	M22 x 1.5 ; 14 deep	3	O ⁵⁾
T2	Drain line	DIN 3852 ⁶⁾	M22 x 1.5 ; 14 deep	3	X ⁵⁾
U	Bearing flushing	DIN 3852 ⁶⁾	M14 x 1.5 ; 12 deep	3	Х

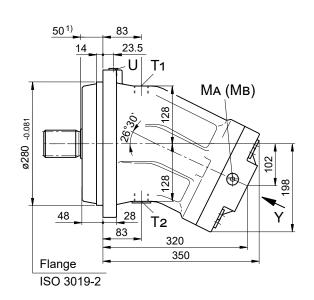

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 44).
- The spot face can be deeper than specified in the appropriate standard.
- O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

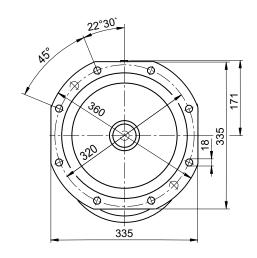

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

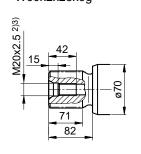
01 - SAE flange ports at rear

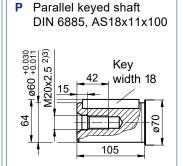
02 - SAE flange ports at side, opposite

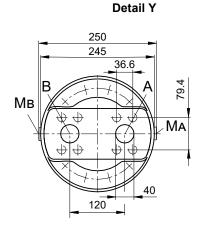

Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
01 \ 02	Α丶B	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2 ; 19 deep	400	Ο


- 1) Observe the general instructions on page 46 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

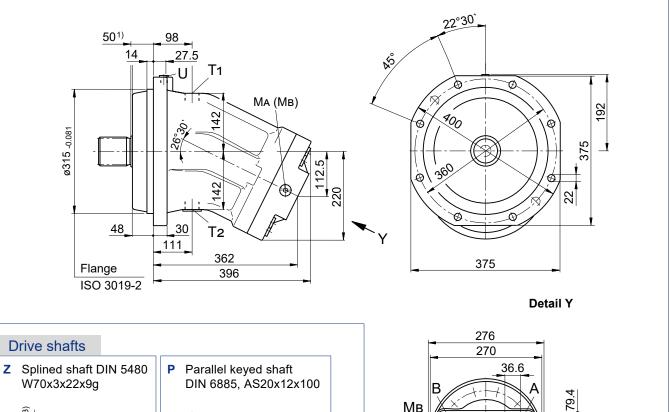

Port plate 01 - SAE flange ports at rear

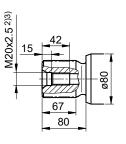


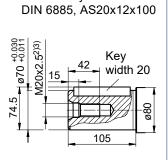


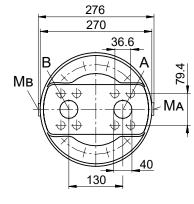
Drive shafts

Splined shaft DIN 5480 W60x2x28x9g

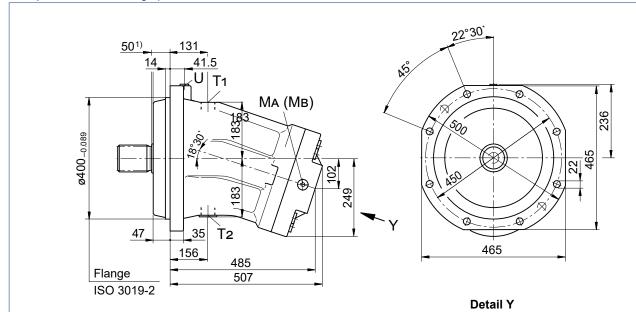

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A、B	Service line Fastening thread A/B	SAE J5185 DIN 13	1 1/2 in M16 x 2 ; 21 deep	400	0
T1	Drain line	DIN 3852 7)	M33 x 2 ; 18 deep	3	O ⁶⁾
T2	Drain line	DIN 3852 7)	M33 x 2 ;18 deep	3	X 6)
U	Bearing flushing	DIN 3852 7)	M14 x 1.5 ; 12 deep	3	Х
Ма • Мв	Measuring operating pressure	DIN 3852 7)	M14 x 1.5 ; 12 deep	400	Х


- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 44).
- 7) The spot face can be deeper than specified in the appropriate standard.
- O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

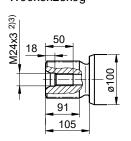



Before finalizing your design, request a binding installation drawing. Dimensions in mm.

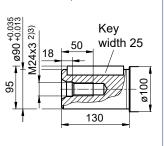
Port plate 01 – SAE flange ports at rear


Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] 4)	State ⁸⁾
A、B	Service line Fastening thread A/B	SAE J5185 DIN 13	1 1/2 in M16 x 2 ; 21 deep	400	0
T1	Drain line	DIN 3852 7)	M33 x 2 ; 18 deep	3	O 6)
T2	Drain line	DIN 3852 7)	M33 x 2 ;18 deep	3	X 6)
U	Bearing flushing	DIN 3852 7)	M18 x 1.5 ; 12 deep	3	Χ
Ма、Мв	Measuring operating pressure	DIN 3852 7)	M14 x 1.5 ; 12 deep	400	Χ

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 44).
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 01 - SAE flange ports at rear

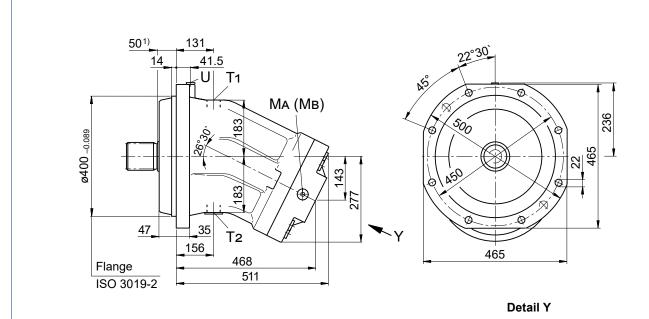


Drive shafts

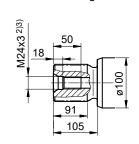
Z Splined shaft DIN 5480 W90x3x28x9g

Parallel keyed shaft DIN 6885, AS25x14x125

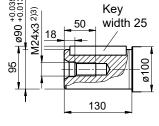
344 340 44.5 Мв 96 50 170

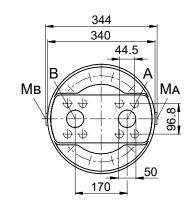

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A、B	Service line Fastening thread A/B	SAE J5185 DIN 13	2 in M20 x 2.5 ; 30 deep	400	0
T1	Drain line	DIN 3852 7)	M42 x 2 ; 20 deep	3	O 6)
T2	Drain line	DIN 3852 7)	M42 x 2 ; 20 deep	3	X 6)
U	Bearing flushing	DIN 3852 7)	M18 x 1.5 ; 12 deep	3	Χ
Ма • Мв	Measuring operating pressure	DIN 3852 7)	M14 x 1.5 ; 12 deep	400	Х

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 44).
- 7) The spot face can be deeper than specified in the appropriate standard.
- O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 01 – SAE flange ports at rear


Drive shafts


Z Splined shaft DIN 5480 W90x3x28x9g

P Parallel keyed shaft DIN 6885, AS25x14x125

| SELOTOR | SELOTOR

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State 8)
A、B	Service line Fastening thread A/B	SAE J5185 DIN 13	2 in M20 x 2.5 ; 30 deep	400	Ο
T1	Drain line	DIN 3852 7)	M42 x 2 ; 20 deep	3	O 6)
T2	Drain line	DIN 3852 7)	M42 x 2 ; 20 deep	3	X 6)
U	Bearing flushing	DIN 3852 7)	M18 x 1.5 ; 12 deep	3	X
Ма • Мв	Measuring operating pressure	DIN 3852 7)	M14 x 1.5 ; 12 deep	400	X

- 1) To shaft collar
- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) Observe the general instructions on page 46 for the maximum tightening torques.
- 4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 6) Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 44).
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Flushing and boost pressure valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

With port plate 027, the valve is mounted directly on the fixed motor (sizes 45 to 180, 250); with port plate 017 (sizes 355 and 500) on a plate.

Cracking pressure of pressure retaining valve

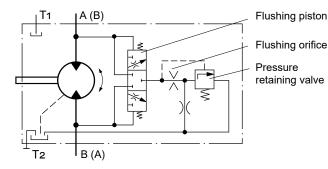
(observe when setting the primary valve)

Sizes 45 to 500, fixed setting 16 bar

Switching pressure of flushing piston Δp

Sizes 45 to 500 _ 8±1 bar

Flushing flow qv


Orifice (throttles with integrated valve) can be used to set the flushing flows as required.

Following parameters are based on:

 $\Delta p_{ND} = p_{ND} - p_G = 25$ bar and $\nu = 10$ mm²/s

 $(p_{ND} = low pressure, p_G = case pressure)$

Schematic

Standard flushing flows

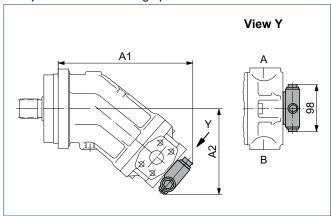
Flushing and boost pressure valve, mounted (code 7)

Size	Flushing flow q _v [L/min]	ø [mm]	Mat. No. of orifice
45	3.5	1.2	R909651766
107、125	8	1.8	R909419696
160 \ 180	10	2.0	R909419697
250	10	2.0	R909419697
355 \ 500	16	2.5	R910803019

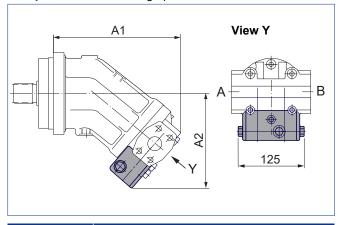
With sizes 45 to 180, orifices can be supplied for flushing flows from 3.5 to 10 L/min. For other flushing flows, please state the required flushing flow when ordering. The flushing flow without orifice is approx. 12 to 14 L at low pressure $\Delta p_{ND} = 25 \text{ bar.}$

Flushing and boost pressure valve, integrated (code 9)

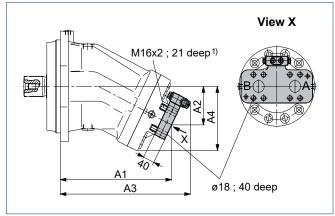
Size	Throttle ø [mm]	q _v [L/min]
56、63、	1.5	6
80 \ 90	1.8	7.3


Flushing and boost pressure valve

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Dimensions

Port plate 027 - SAE flange ports at side


Size	A1	A2	
45	223	151	
107 \ 125	294	192	
160、180	315	201	
250	344	172	

Port plate 029 - SAE flange ports at side

Size	A1	A2
56、63	225	176
80 \ 90	257	186.7

Port plate 017 - SAE flange ports at rear

Size	A1	A2	A3	A4	
355	356	120	421	198	
500	397	130	464	220	

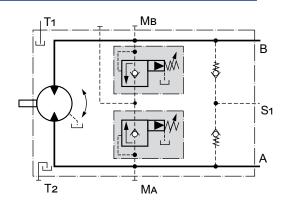
DIN 13, observe the general instructions on page 46 for the maximum tightening torques

Pressure-relief valve

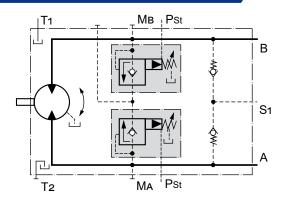
The MHDB pressure-relief valves (see RE 64642) protect the hydraulic motor from overload. As soon as the set cracking pressure is reached, the hydraulic fluid flows from the highpressure side to the low-pressure side.

The pressure-relief valves are only available in combination with port plates 181, 191 or 192 (counterbalance valve for mounting to port plate 181: see next page).

Cracking pressure setting range ___ ____ 50 to 420 bar


With the version "with pressure boost facility" (192), a higher pressure setting can be realized by applying an external pilot pressure of 25 to 30 bar to port P_{St} .

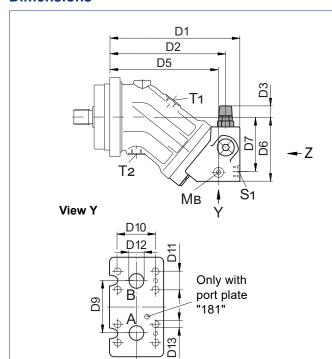
When ordering, please state in plain text:


- Cracking pressure of pressure-relief valve
- Cracking pressure with pilot pressure applied to Pst (only with version 192)

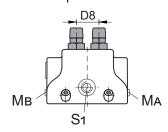
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Version without pressure boost facility "191"

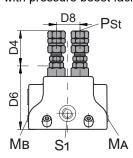
Version with pressure boost facility "192"



Pressure-relief valve



Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Dimensions

Version without pressure boost facility "191" or "181"

View Z: Version with pressure boost facility "192"

Size		D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13 ²⁾
28、32	MHDB. 16	209	186	25	68	174	102	87	36	66	50.8	23.8	ø19	M10 ; 17 deep
45	MHDB. 16	222	198	22	65	187	113	98	36	66	50.8	23.8	ø19	M10 ; 17 deep
56、63	MHDB. 22	250	222	19	61	208	124	105	42	75	50.8	23.8	ø19	M10 ; 13 deep
80 \ 90	MHDB. 22	271	243	17.5	59	229	134	114	42	75	57.2	27.8	ø25	M12 ; 18 deep
107 \ 125	MHDB. 32	298	266	10	52	250	149.5	130	53	84	66.7	31.8	ø32	M14 ; 19 deep
160 \ 180	MHDB.32	332	301	5	47	285	170	149	53	84	66.7	31.8	ø32	M14; 19 deep

Size	A · B	S1 ¹⁾	Ma · MB ¹⁾	Pst ¹⁾
28 \ 32	3/4 in	M22 x 1.5 ; 14 deep	M20 x 1.5 ; 14 deep	G 1/4
45	3/4 in	M22 x 1.5 ; 14 deep	M20 x 1.5 ; 14 deep	G 1/4
56、63	3/4 in	M26 x 1.5 ; 16 deep	M26 x 1.5 ; 16 deep	G 1/4
80 \ 90	1 in	M26 x 1.5 ; 16 deep	M26 x 1.5 ; 16 deep	G 1/4
107 \ 125	1 1/4 in	M26 x 1.5 ; 16 deep	M26 x 1.5 ; 16 deep	G 1/4
160 \ 180	1 1/4 in	M26 x 1.5 ; 16 deep	M30 x 1.5 ; 16 deep	G 1/4

Assembly instructions for port plate with pressure boost facility "192":

The lock nut must be counterheld when installing the hydraulic line at the p_{st} port!

Designation	Port for	Standard	Size	Maximum pressure [bar] ²⁾	State ³⁾
Α、B	Service line	SAE J518	See above	450	0
S1	Supply (only with port plate 191/192)	DIN 3852	See above	5	0
Ma · MB	Measuring operating pressure	DIN 3852	See above	450	Χ
Pst	Pilot pressure (only with port plate 192)	DIN ISO 228	See above	30	0

- 1) Observe the general instructions on page 46 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

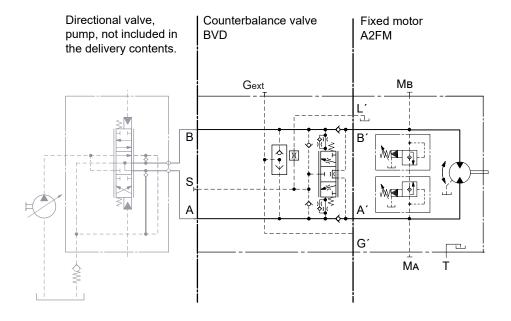
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Function

Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.

If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar.

Note

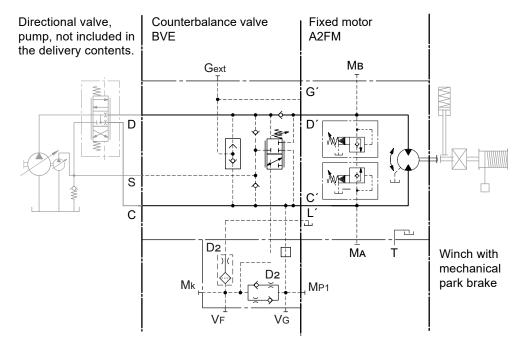

- BVD available for sizes 28 to 180 and BVE available for sizes 107 to 180.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: A2FM90/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525!
- For the design of the brake release valve, we must know for the mechanical park brake :
- the pressure at the start of opening
- the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with
- the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Travel drive counterbalance valve BVD...F

Application option

- Travel drive on wheeled excavators

Example schematic for travel drive on wheeled excavators A2FM090/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

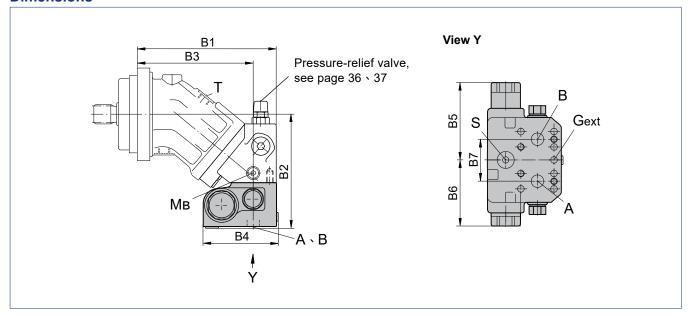
Winch counterbalance valve BVD...W and BVE

Application options

- Winch drive in cranes (BVD and BVE)
- Track drive in excavator crawlers (BVD)

Example schematic for winch drive in cranes A2FM090/61W-VAB188 + BVE25W385/51ND-V100K00D4599T30S00-0

Permissible input flow or pressure in operation with DBV and BVD/BVE


	Without val	ve	Restricted \	/alues in ope	ration with	DBV and I	BVD/BVE			
Motor NG	p _{nom} /p _{max} [bar]	q _{v max} [L/min]	DBV NG	p _{nom} /p _{max} [bar]	q _v [L/min]	Code	BVD / BVE NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code
28	400/450	176	16	350/420	100	181	20	350/420	100	188
32		201				191、192	(BVD)			
45		255								
56		280	22		240				220	
63		315								
80		360								
90		405								
107		427				171				178
125		500				191、192				
107		427	32		400	181	25		320	188
125		500				191、192	(BVD/BVE)			
160		577								
180		648								

DBV	pressure-relief valve
BVD	counterbalance valve, double-acting
BVE	counterbalance valve, one-sided

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

A2FM	Counterbalance valve										
Size	Туре	Ports	Dimen	Dimensions							
		A \ B	B1	B2	B3	B4 (S)	B4 (L)	B5	B6	В7	
28、32	BVD 20 16	3/4 in	209	175	174	142	147	139	98	66	
45	BVD 20 16	3/4 in	222	196	187	142	147	139	98	66	
56 \ 63	BVD 20 17	3/4 in	250	197	208	142	147	139	98	75	
80、90	BVD 20 27	1 in	271	207	229	142	147	139	98	75	
107 \ 125	BVD 20 28	1 in	298	238	251	142	147	139	98	84	
107 \ 125	BVD 25 38	1 1/4 in	298	239	251	158	163	175	120.5	84	
160 \ 180	BVD 25 38	1 1/4 in	332	260	285	158	163	175	120.5	84	
107 \ 125	BVD 25 38	1 1/4 in	298	240	251	167	172	214	137	84	
160 \ 180	BVD 25 38	1 1/4 in	332	260	285	167	172	214	137	84	
250	On request										

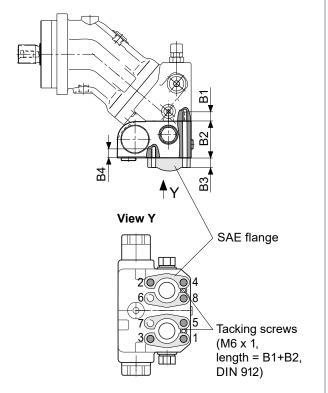
Designation	Port for	Version	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State 4)
Α、B	Service line		SAE J518	see table above	420	0
S	Infeed	BVD20	DIN 3852 ³⁾	M22 x 1.5 ; 14 deep	30	Χ
		BVD25 \ BVE25	DIN 3852 ³⁾	M27 x 2 ; 16 deep	30	Х
Br	Brake release, reduced high pressure	L	DIN 3852 3)	M12 x 1.5 ; 12.5 deep	30	0
Gext	Brake release, high pressure	S	DIN 3852 3)	M12 x 1.5 ; 12.5 deep	420	Х
Ma · MB	Measuring pressure A and B		ISO 6149 ³⁾	M12 x 1.5 ; 12 deep	420	Х

- 1) Observe the general instructions on page 46 for the maximum tightening torques.
- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- The spot face can be deeper than specified in the appropriate standard.
- O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Mounting the counterbalance valve

When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection).

The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following


6 screws (1 \ 2 \ 3 \ 4 \ 5 \ 8) _____ length B1+B2+B3 2 screws (6 \ 7)_

Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [Nm]
M6 x 1 (tacking screw)	10.9	15.5
M10	10.9	75
M12	10.9	130
M14	10.9	205

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Size	28、32、45	56、63	80 \ 90	107、125、160、180	107 \ 125
Port plate	18				17
B1 1)	M10 x 1.5 ; 17 deep	M10 x 1.5 ; 17 deep	M12 x 1.75 ; 18 deep	M14 x 2 ; 19 deep	M12 x 1.75 ; 17 deep
B2	78 ²⁾	68	68	85	68
B3	customer-specific				
B4	M10 x 1.5; 15 deep	M10 x 1.5 ; 15 deep	M12 x 1.75 ; 16 deep	M14 x 2 ; 19 deep	M12 x 1.75 ; 17 deep

- 1) Minimum required thread reach 1 x ø-thread
- 2) Including sandwich plate

Speed sensors

The versions A2FM...U and A2FM...F ("prepared for speed sensor", i.e. without sensor) is equipped with a toothed ring on the rotary group.

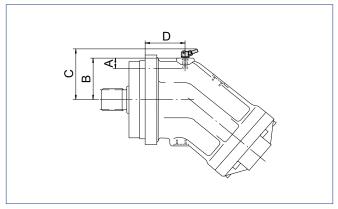
On deliveries "prepared for speed sensor", the port is plugged with a pressure-resistant cover.

With the DSA or HDD speed sensor mounted a signal proportional to motor speed can be generated.

The sensors measures the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety information about the sensor can be found in the relevant data sheet.

DSA RE 95133 HDD RE 35135


The sensor is mounted at the specially provided port D as follows:

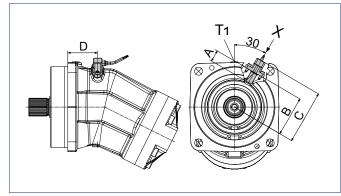
____with one mounting bolt ____with two mounting bolts DSA HDD

We recommend ordering the A2FM fixed motor complete with sensor mounted.

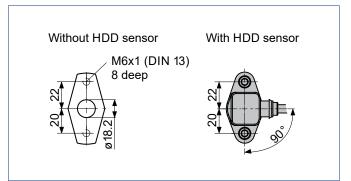
Version "V"

Sizes 23 to 200 with DSA sensor

Version "V"


Sizes 250 to 500 with DSA sensor

On request


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Version "H"

Sizes 250 to 500 with HDD sensor

View X

Speed sensors

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Size	Size			45	56、63	80 \ 90	107、125
Numbe	er of	teeth	38	45	47	53	59
DSA	Α	Insertion depth (tolerance ± 0.1)	18.4	18.4	18.4	18.4	18.4
	В	Contact surface	57.9	64.9	69.9	74.9	79.9
	С		74.5	81.5	86.5	91.5	96.5
	D		54.7	54.3	61.5	72.5	76.8

Size	Size			200	250	355	500
Numbe	Number of teeth		67	80	78	90	99
HDD	Α	Insertion depth (tolerance ± 0.1)	_	_	32	32	32
	В	Contact surface	_	_	110.5	122.5	132.5
	С		_	_	149	161	171
	D		_	_	82	93	113
DSA	Α	Insertion depth (tolerance ± 0.1)	18.4	18.4	32	32	32
	В	Contact surface	87.4	100.9	_	_	_
	С		104	117.5	_	_	_
	D		86.8	97.5			

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T1 > T2).

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

See the following examples 1 to 8.

Further installation positions are possible upon request.

Recommended installation positions: 1 and 2.

Note

With sizes 10 to 200 with installation position "shaft upward", an air-bleed port R is required (state in plain text when ordering - special version). With sizes 250 to 1000, port U is provided as standard in the area near the bearings for air bleeding.

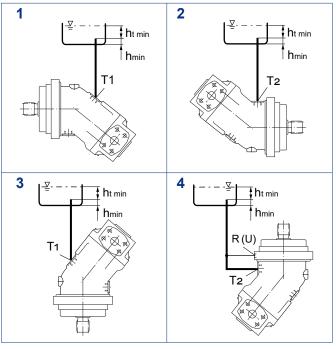
		•
Installation position	Air bleed	Filling
1	_	T1
2	_	T2
3	_	T1
4	R (U)	T2
5	L1	T1 (L1)
6	L1	T2 (L1)
7	L1	T1 (L1)
8	R (U)	T2 (L1)

L₁ Filling / air bleed

R Air bleed port (special version) Bearing flushing / air bleed port

T1\T2 Drain port

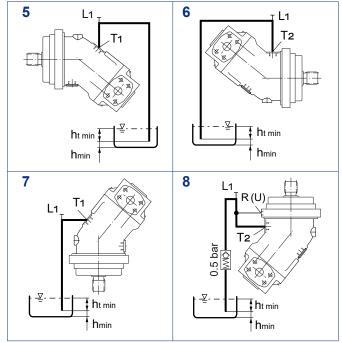
Minimum required immersion depth (200 mm) ht min


Minimum required spacing to reservoir hmin

bottom (100 mm)

Below-reservoir installation

(standard)


Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Recommendation for installation position 8 (drive shaft upward): A check valve in the drain line (cracking pressure 0.5bar) can prevent draining of the motor housing.

General instructions

- The motor A2FM is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
- The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
- The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
- Fittings

Observe the manufacturer's instructions regarding tightening torques of the fittings used.

- Mounting bolts:

DIN 13 or with thread according to ASME B1.1, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

Female threads in the axial piston unit:
 The maximum permissible tightening torques M_{G max} are maximum values for the female threads and must not be exceeded. For values, see the following table.

- Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports		Maximum permissible tightening torque of the	Required tightening torque	WAF hexagon socket	
Standard	Size of thread	female threads M _{G max}	of the threaded plugs M _V 1)	of the threaded plugs	
DIN 3852 ¹⁾	M10 x 1	30 Nm	15 Nm ²⁾	5 mm	
	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm	
	M14 x 1.5	80 Nm	35 Nm	6 mm	
	M16 x 1.5	100 Nm	50 Nm	8 mm	
	M18 x 1.5	140 Nm	60 Nm	8 mm	
	M20 x 1.5	170 Nm	80 Nm	10 mm	
	M22 x 1.5	210 Nm	80 Nm	10 mm	
	M26 x 1.5	230 Nm	120 Nm	12 mm	
	M27 x 2	330 Nm	135 Nm	12 mm	
	M30 x 2	420 Nm	215 Nm	17 mm	
	M33 x 2	540 Nm	225 Nm	17 mm	
	M42 x 2	720 Nm	360 Nm	22 mm	
DIN ISO 228	G 1/4	40 Nm	_	_	

- 1) The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.
- 2) In the "lightly oiled" state, the M_{V} is reduced to 10 Nm for M10 x 1 and 17 Nm for M12 x 1.5.

YEOSHE HYDRAULICS CO.,LTD

No.68 Wukong 1set Rd, Wufong Dist 413, Taichung Taiwan

Tel: +886-4-2332339 Fax: +886-4-23333817
E-mail: yeoshe@ms36.hinet.net Website: www.yeoshe.com.tw

Dongguan branch

Cell phone: +86-10600266957 Tel: +86-769-85962158

Tel: +86-769-85962158 Fax: +86-769-81635359 E-mail: CNA523@yeoshe.com.cn Website: www.yeoshe.com.cn

YEOSHE BEST CHOICE Efficient Performance

Innovative Technology Reliable Quality and Service

油聖液壓科技有限公司

YEOSHE HYDRAULICS TECHNOLOGY CO.,LTD.

413 台灣台中市霧峰區霧工一路68號

No.68, Wugong 1st Rd., Wufong Dist., Taichung City, Taiwan, 413 TEL +886-4-23332339 FAX +886-4-23333817 E-mail yeoshe@yeoshe.com.tw

東莞辦事處 Dongguan **CP** +86-13600266957 (Miss Zhong)

E-mail yeoshe@yeoshe.com.tw

上海辦事處 Shanghai CP +86-15021931394 (Mr. Wu) CP +86-18939716986 (Mr. Chen)

經銷商 Distributor

www.yeoshehydraulic.com

版權所有 翻印必究 Copyright @2025 by YEOSHE